
DOI: 10.1007/s10910-006-9088-7
Journal of Mathematical Chemistry, Vol. 41, No. 1, January 2007 (© 2006)

The Merrifield–Simmons indices and Hosoya indices of
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The Merrifield–Simmons index of a graph is defined as the total number of the inde-
pendent sets of the graph and the Hosoya index of a graph is defined as the total num-
ber of the matchings of the graph. In this paper, we characterize the trees with maximal
Merrifield–Simmons indices and minimal Hosoya indices, respectively, among the trees
with k pendant vertices.
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1. Introduction

Let G be a graph on n vertices. Two vertices of G are said to be
independent if they are not adjacent in G. A k-independent set of G is a
set of k-mutually independent vertices. Denote by i(G, k) the number of the
k-independent sets of G. For convenience, we regard the empty vertex set as an
independent set. Then i(G, 0) = 1 for any graph G. The Merrifield–Simmons
index of G, denoted by i(G), is defined as i(G) = ∑n

k=0 i(G, k). So i(G) is
equal to the total number of the independent sets of G. Similarly, two edges of
G are said to be independent if they are not adjacent in G. A k-matching of G
is a set of k mutually independent edges. Denote by z(G, k) the number of the
k-matchings of G. For convenience, we regard the empty edge set as a matching.
Then z(G, 0) = 1 for any graph G. The Hosoya index of G, denoted by z(G), is
defined as z(G) = ∑� n

2 �
k=0 z(G, k). Obviously, z(G) is equal to the total number of

matchings of G.
The Merrifield–Simmons index was introduced in 1982 in a paper of

Prodinger and Tichy [15], although it is called Fibonacci number of a graph there.
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The Merrifield–Simmons index is one of the most popular topological indices
in chemistry, which was extensively studied in a monograph [13]. There Merri-
field and Simmons showed the correlation between this index and boiling points.
Now there have been many papers studying the Merrifield–Simmons index. In
[15], Prodinger and Tichy showed that, for n-vertex trees, the star has the maxi-
mal Merrifield–Simmons index and the path has the minimal Merrifield–Simmons
index. In [1], Alameddine studied bounds for the Merrifield–Simmons index of a
maximal outerplanar graph. Gutman [7], Zhang [17], Zhang [18], Zhang and Tian
[19, 20] studied the Merrifield–Simmons indices of hexagonal chains and cata-
condensed systems, respectively. In [12], Li et al characterized the tree with the
maximal Merrifield–Simmons index among the trees with given diameter. In [14],
Pedersen and Vestergaard studied the Merrifield–Simmons indices of the unicyclic
graphs. In [21], Yu and Tian studied the Merrifield–Simmons indices of the graphs
with given edge-independence number and cyclomatic number.

The Hosoya index of a graph was introduced by Hosoya [10] and was
applied to correlations with boiling points, entropies, calculated bond orders, as
well as for coding of chemical structures [13, 16]. Since then, many authors have
investigated the Hosoya index (e.g., see [3–6, 8, 9, 16]). An important direction
is to determine the graphs with maximal or minimal Hosoya indices in a given
class of graphs. In [7], Gutman showed that linear hexagonal chain is the unique
chain with minimal Hosoya index among all hexagonal chains. In [17], Zhang
showed that zig–zag hexagonal chain is the unique chain with maximal Hosoya
index among all hexagonal chains. In [19], Zhang and Tian gave another proof
on Gutman’s and Zhang’s results above mentioned. In [18], Zhang determined
the graph with the second minimal Hosoya index among all hexagonal chains. In
[20], Zhang and Tian determined the graphs with minimal and second minimal
Hosoya indices among catacondensed systems. As for n-vertex trees, it has been
shown that the path has the maximal Hosoya index and the star has the minimal
Hosoya index (see [8]). Recently, Hou [11] characterized the trees with a given
size of matching and having minimal and second minimal Hosoya index, respec-
tively. In [21], Yu and Tian studied the graphs with given edge-independence
number and cyclomatic number and having the minimal Merrifield–Simmons
indices.

Let Tn,k be the set of all trees with n vertices and k pendant vertices. In
this paper, we show that Pn,k (as shown in figure 1) is the tree with maximal
Merrifield–Simmons index and the minimal Hosoya index in Tn,k .

In order to state our results, we introduce some notation and terminology.
Other undefined notation may refer to Bondy and Murty [2].

If W ⊆ V (G), we denote by G − W the subgraph of G obtained by delet-
ing the vertices of W and the edges incident with them. Similarly, if E ′ ⊆ E(G),
we denote by G − E ′ the subgraph of G obtained by deleting the edges of E ′.
If W = {v} and E ′ = {xy}, we write G − v and G − xy instead of G − {v} and
G − {xy}, respectively. If a graph G has components G1, G2, . . . , Gt , then G is
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Figure 1

denoted by
⋃t

i=1 Gi . For a vertex v of G, we denote NG[v] = {v} ∪ { u | uv ∈
E(G)}. We denote by Pn and Sn the path and the star on n vertices, respectively.

2. Lemmas and results

According to the definitions of the Merrifield–Simmons index and Hosoya
index, we immediately get the following results.

Lemma 2.1. Let G be a graph and uv be an edge of G. Then

(1) i(G) = i(G − uv) − i(G − (NG[u] ∪ NG[v])),
(2) (see [8]) z(G) = z(G − uv) + z(G − {u, v}).
From lemma 2.1, we have z(G) > z(G − uv), if uv is an edge of G.

Lemma 2.2 (see [8]). Let v be a vertex of G. Then

(1) i(G) = i(G − v) + i(G − NG[v]),
(2) z(G) = z(G − v) + ∑

u
z(G − {u, v}), where the summation extends over

all vertices adjacent to v.

From lemma 2.2, if v is a vertex of G, then i(G) > i(G − v). Moreover, if
G is a graph with at least one edge, then z(G) > z(G − v).

In particular, when v is a pendent vertex of G and u is the unique vertex
adjacent to v, we have i(G) = i(G−v)+i(G−{u, v}) and z(G) = z(G−v)+z(G−
{u, v}). So it is easy to see that i(P0) = 1, i(P1) = 2 and i(Pn) = i(Pn−1)+i(Pn−2)

for n � 2. Denote by Fn the nth Fibonacci number. Recall that Fn = Fn−1+Fn−2
with initial conditions F0 = 1 and F1 = 1. We have

i(Pn) = Fn+1 =




(
1 + √

5
2

)n+2

−
(

1 − √
5

2

)n+2


 /
√

5.
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Similarly, we have z(P0) = 1, z(P1) = 1 and z(Pn) = z(Pn−1) + z(Pn−2) for
n � 2. Thus

z(Pn) = Fn =




(
1 + √

5
2

)n+1

−
(

1 − √
5

2

)n+1


 /
√

5.

Lemma 2.3 (see [8]). If G1, G2, . . . , Gt are the components of a graph G, we
have

(1) i(G) =
∏t

i=1
i(Gi ),

(2) z(G) =
∏t

i=1
z(Gi ).

Let P = v0v1 . . . vk (k � 1) be a path of a tree T . If dT (v0) � 3, dT (vk) � 3
and dT (vi ) = 2 (0 < i < k), we call P an internal path of T . If dT (v0) � 3,
dT (vk) = 1 and dT (vi ) = 2 (0 < i < k), we call P a pendant path of T with
root v0 and particularly when k = 1, we call P a pendant edge. Let s(T ) be the
number of vertices in T with degree more than 2 and p(T ) the number of pen-
dent paths in T with length more than 1. For example, we consider the tree T
as shown in figure 2. v3v4v5v6 is an internal path of T , while v6v7v8v9v10, v6v11,
v3v1, and v3v2 are all pendant paths of T ; s(T ) = 2 and p(T ) = 1.

In the following, we shall define two kinds of operations of T ∈ Tn,k and
show that these two kinds of operations make the Merrifield–Simmons indices
of the trees increase strictly and the Hosoya indices of the trees decrease strictly.

If T ∈ Tn,k (3 � k � n − 2), T 	∼= Pn,k and p(T ) 	= 0, then T can be seen
as the tree as shown in figure 3, where Ps (s � 3) is the pendant path of T with
s vertices and root u, T1 and T2 are two subtrees of T with vertices v and u as

Figure 2

Figure 3
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roots, respectively, and T1, T2 	∼= P1. If T ′ is obtained from T by replacing Ps
with a pendant edge and replacing the edge uv with a path Ps , we say that T ′
is obtained from T by operation I (as shown in figure 3). It is easy to see that
T ′ ∈ Tn,k .

Now we show that operation I makes the Merrifield–Simmons indices of
the trees increase strictly and the Hosoya indices of the trees decrease strictly. In
the following proofs, we shall use the same notations as above.

Lemma 2.4. If T ′ is obtained from T by operation I, then

(1) i(T ′) > i(T ),

(2) z(T ′) < z(T ).

Proof. (1) Let NT1[v] = V1 and NT2[u] = V2. If s � 4, by lemmas 2.2 and 2.3,
we have

i(T ) = i(T − v) + i(T − NT [v])
= i(T1 − v)(i(T2 − u) · i(Ps−1) + i(T2 − V2) · i(Ps−2))

+i(T1 − V1) · i(T2 − u) · i(Ps−1),

i(T ′) = i(T ′ − v) + i(T ′ − NT ′ [v])
= i(T1 − v)(2 · i(T2 − u) · i(Ps−2) + i(T2 − V2) · i(Ps−3))

+i(T1 − V1)(2 · i(T2 − u) · i(Ps−3) + i(T2 − V2) · i(Ps−4)).

Since i(P0) = 1, i(P1) = 2 and i(Pn) = i(Pn−1) + i(Pn−2) for n � 2, we have

i(T ′) − i(T ) = i(Ps−4)(i(T1 − v) − i(T1 − V1))(i(T2 − u) − i(T2 − V2)).

Since s � 4, i(Ps−4) > 0. Noting that T1, T2 	∼= P1, by lemma 2.2, we have
i(T1−v)−i(T1−V1) > 0 and i(T2−u)−i(T2−V2) > 0. Therefore, i(T ′)−i(T ) > 0.

If s = 3, similarly, we have

i(T ′) − i(T ) = (i(T1 − v) − i(T1 − V1))(i(T2 − u) − i(T2 − V2)) > 0.

Therefore i(T ′) > i(T ), if T ′ is obtained from T by operation I.
(2) Let Al and Bl be the trees as shown in figure 4.

Figure 4
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By lemmas 2.1 – 2.3, we have

z(T ) = z(T − uv) + z(T − {u, v})
= z(T1) · z(As) + z(T1 − v) · z(T2 − u) · z(Ps−1)

= z(T1) · z(As−1) + z(T1) · z(As−2) + z(T1 − v) · z(T2 − u) · z(Ps−1),

z(T ′) = z(T ′ − v′v) + z(T ′ − {v′, v})
= z(T1) · z(Bs−1) + z(T1 − v) · z(Bs−2)

= z(T1) · z(As−1) + z(T1) · z(T2 − u) · z(Ps−2) + z(T1 − v) · z(As−2)

+z(T1 − v) · z(T2 − u) · z(Ps−3).

Since z(P0) = 1, z(P1) = 1 and z(Pn) = z(Pn−1) + z(Pn−2) for n � 2, we have

z(T ) − z(T ′) = (z(T1) − z(T1 − v))(z(As−2) − z(T2 − u) · z(Ps−2)).

Noting that T1, T2 	∼= P1, by lemmas 2.1 and 2.2, we have z(As−2) − z(T2 −
u) · z(Ps−2) > 0 and z(T1) − z(T1 − v) > 0. So z(T ) − z(T ′) > 0. Therefore if T ′
is obtained from T by operation I, z(T ′) < z(T ).

From lemma 2.4, we immediately get the following result.

Lemma 2.5. Let T ∈ Tn,k (3 � k � n − 2), T 	∼= Pn,k and p(T ) 	= 0.

(1) If s(T ) = 1, we can finally get a tree T ′ by operation I with i(T ′)
> i(T ), z(T ′) < z(T ), and p(T ′) = 1; it is easy to see that T ′ ∼= Pn,k ;

(2) if s(T ) � 2, we can finally get a tree T ′ by operation I with i(T ′)
> i(T ), z(T ′) < z(T ), and p(T ′) = 0.

If T ∈ Tn,k (3 � k � n−2), T 	∼= Pn,k and p(T ) = 0, then we always can find
two pendant vertices u1 and v1 of T such that d(u1, v1) = max{d(u, v) : u, v ∈
V (T )}. Let u1u, v1v ∈ E(T ), then NT (u) = {u1, u2, . . . , us, w} (s � 2), NT (v) =
{v1, v2, . . . , vt , w

′}(t � 2), where u1, u2, . . . , us, v1, v2, . . . , vt are pendant vertices
of T , dT (w) � 2 and dT (w′) � 2. Note that w = w′, when d(u1, v1) = 3. If T ′ =
T − {vv2, . . . , vvt } + {uv2, . . . , uvt } and T ′′ = T − {uu2, . . . , uus} + {vu2, . . . , vus},
we say that T ′ and T ′′ are obtained from T by operation II, respectively. It is
easy to see that T ′, T ′′ ∈ Tn,k , p(T ′) = p(T ′′) = 1 and s(T ′) = s(T ′′) = s(T ) − 1.

Now we show that operation II makes the Merrifield–Simmons indices of
the trees increase strictly and the Hosoya indices of the trees decrease strictly. In
the following proofs, we shall use the same notations as above.

Lemma 2.6. If T ′ and T ′′ are obtained from T by Operation II, then

(1) either i(T ′) > i(T ) or i(T ′′) > i(T ),

(2) either z(T ′) < z(T ) or z(T ′′) < z(T ).
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Proof. (1) Let u1, v1 be the pendant vertices such that d(u1, v1) = max{d(u, v) :
u, v ∈ V (T )}. If d(u1, v1) � 4, without loss of generality, we suppose u1u, v1v,
uw ∈ E(T ) and dT (w) � 2. Then w 	= v. In this case, T, T ′, T ′′ can be seen as
the trees as shown in figure 5.

Denote NT1[v] = V1 and NT1−w[v] = V2. Note that if d(u1, v1) = 4, then
V1 = {v, w} and V2 = {v}; if d(u1, v1) > 4, then V1 = {v, w′} and V2 = {v, w′}.
By lemmas 2.2 and 2.3, we have

i(T ) = i(T − u) + i(T − NT [u])
= 2s(2t · i(T1 − v) + i(T1 − V1)) + 2t · i(T1 − {w, v}) + i(T1 − ({w} ∪ V2)),

i(T ′) = i(T ′ − u) + i(T ′ − NT ′ [u])
= 2s+t−1(2 · i(T1−v)+i(T1−V1)) + 2 · i(T1 − {w, v}) + i(T1 − ({w} ∪ V2)),

i(T ′′) = i(T ′′ − u) + i(T ′′ − {u, w, u1})
= 2(2s+t−1 · i(T1−v)+i(T1−V1))+2s+t−1 · i(T1−{w, v})+i(T1−({w} ∪ V2)).

It is easy to see that

i(T ′) − i(T ) = 2(2t−1 − 1)(2s−1 · i(T1 − V1) − i(T1 − {w, v})),
i(T ′′) − i(T ) = 2(2s−1 − 1)(2t−1 · i(T1 − {w, v}) − i(T1 − V1)).

Note that s, t � 2. If i(T ′) − i(T ) � 0, we have 2s−1 · i(T1 − V1) � i(T1 −
{w, v}). Then we have

i(T ′′) − i(T ) � 2(2s−1 − 1)(2t−1 · 2s−1 − 1) · i(T1 − V1) > 0.

If d(u1, v1) = 3, we have T ′ ∼= T ′′ and

i(T ′) − i(T ) = (2s+t + 2s+t−1 + 2) − (2s+t + 2s + 2t )

= 2(2t−1 − 1)(2s−1 − 1) > 0.

Figure 5
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Therefore, if T ′ and T ′′ are obtained from T by operation II, then either i(T ′) >

i(T ) or i(T ′′) > i(T ).
(2) Let u1, v1 be the pendant vertices such that d(u1, v1) = max{d(u, v) :

u, v ∈ V (T )}. If d(u1, v1) � 4, without loss of generality, we suppose u1u, v1v,
uw ∈ E(T ) and dT (w) � 2. Then w 	= v. In this case, T, T ′, T ′′ can be seen as
the trees as shown in figure 5.

Denote A = ∑
v′v∈E(T1)

z(T1 − {v′, v}) and B = ∑
v′v∈E(T1−w) z(T1 −

{v′, v, w}). By Lemmas 2.1 – 2.3, we have

z(T ) = z(T − uw) + z(T − {u, w})
= (s + 1)((t + 1) · z(T1 − v) + A) + (t + 1) · z(T1 − {w, v}) + B,

z(T ′) = z(T ′ − uw) + z(T ′ − {u, w})
= (s + t)(2 · z(T1 − v) + A) + 2 · z(T1 − {w, v}) + B,

z(T ′′) = z(T ′′ − uw) + z(T ′′ − {u, w})
= 2((s + t) · z(T1 − v) + A) + (s + t) · z(T1 − {w, v}) + B.

It is easy to see that

z(T ) − z(T ′) = (t − 1)((s − 1) · z(T1 − v) − A + z(T1 − {w, v})),
z(T ) − z(T ′′) = (s − 1)((t − 1) · z(T1 − v) + A − z(T1 − {w, v})).

Note that s, t � 2. If z(T ) − z(T ′) � 0, we have

(s − 1) · z(T1 − v) + z(T1 − {w, v}) � A.

Then we have

z(T ) − z(T ′′) � (s − 1)(t + s − 2) · z(T1 − v) > 0.

If d(u1, v1) = 3, we have T ′ ∼= T ′′ and

z(T ) − z(T ′) = (s + 1)(t + 1) + 1 − (2(s + t) + 1)

= (t − 1)(s − 1) > 0.

Therefore, if T ′ and T ′′ are obtained from T by operation II, then either
z(T ′) < z(T ) or z(T ′′) < z(T ).

Theorem 2.1. Let T ∈ Tn,k . Then

(1) i(T ) � 2k−1 · Fn−k+1 + Fn−k , the equality holds if and only if T ∼= Pn,k ;

(2) z(T ) � k · Fn−k + Fn−k−1, the equality holds if and only if T ∼= Pn,k .
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Proof. (1) By lemma 2.2 (1), it is easy to see that

i(Pn,k) = 2k−1i(Pn−k) + i(Pn−k−1) = 2k−1 · Fn−k+1 + Fn−k .

Since Tn,2 = {Pn} and Pn
∼= Pn,2, Tn,n−1 = {Sn} and Sn

∼= Pn,n−1, we may
assume 3 � k � n − 2 and it is sufficient to show that i(T ) < i(Pn,k) for any
T ∈ Tn,k and T 	∼= Pn,k .

For T ∈ Tn,k (3 � k � n − 2) and T 	∼= Pn,k , we know 1 � s(T ) � n − k, we
shall show i(T ) < i(Pn,k) by induction on s(T ). When s(T ) = 1, since T 	∼= Pn,k ,
we have p(T ) � 2. By lemma 2.5 (1), we have i(T ) < i(Pn,k). Suppose the result
holds for any tree T ′ with s(T ′) = s − 1. Let s(T ) = s � 2. If p(T ) 	= 0, we
can get a tree T1 ∈ Tn,k such that p(T1) = 0, s(T1) = s and i(T1) > i(T ), by
lemma 2.5 (2). By lemma 2.6 (1), we can get a tree T2 ∈ Tn,k from T1 such that
p(T2) = 1, s(T2) = s − 1 and i(T2) > i(T1). Hence i(T ) < i(T1) < i(T2). By the
induction hypothesis, we have

i(T ) < i(T1) < i(T2) < i(Pn,k).

Therefore, if T ∈ Tn,k , i(T ) � 2k−1 · Fn−k+1 + Fn−k , the equality holds if and
only if T ∼= Pn,k .

(2) By lemma 2.2 (2), we have

z(Pn,k) = k · z(Pn−k) + z(Pn−k−1) = k · Fn−k + Fn−k−1.

Similarly, by lemmas 2.5 and 2.6 (2), we can show that, z(T ) � k · Fn−k +
Fn−k−1, the equality holds if and only if T ∼= Pn,k .

Lemma 2.7. For 3 � k � n − 1, we have

(1) i(Pn,k) > i(Pn,k−1),

(2) z(Pn,k) < z(Pn,k−1).

Proof. (1) By lemma 2.2 (1), we have

i(Pn,k) = 2k−1i(Pn−k) + i(Pn−k−1),

i(Pn,k−1) = 2k−2i(Pn−k+1) + i(Pn−k).

Noting that, for 3 � k � n − 1, i(Pn−k+1) = i(Pn−k) + i(Pn−k−1) , we have

i(Pn,k) − i(Pn,k−1) = (2k−2 − 1)(i(Pn−k) − i(Pn−k−1)) > 0.

Hence i(Pn,k) > i(Pn,k−1) for 3 � k � n − 1.
(2) By lemma 2.2 (2), we have

z(Pn,k) = k · z(Pn−k) + z(Pn−k−1),

z(Pn,k−1) = (k − 1) · z(Pn−k+1) + z(Pn−k).
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Noting that, for 3 � k � n − 1, z(Pn−k+1) = z(Pn−k) + z(Pn−k−1) , we have

z(Pn,k) − z(Pn,k−1) = −(k − 2)z(Pn−k−1) < 0.

Hence z(Pn,k) < z(Pn,k−1) for 3 � k � n − 1.

From theorem 2.1 and lemma 2.7, we immediately get the following results.

Corollary 2.1. Let T be a tree with n vertices. Then

(1) i(T ) � 2n−1 + 1, the equality holds if and only if T ∼= Sn;

(2) if T 	∼= Sn, i(T ) � 3 · 2n−3 + 2, the equality holds if and only if T ∼=
Pn,n−2;

(3) z(T ) � n, the equality holds if and only if T ∼= Sn;

(4) if T 	∼= Sn, z(T ) � 2n − 3, the equality holds if and only if T ∼= Pn,n−2.
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